Schlesinger transformations for algebraic Painlevé VI solutions

نویسندگان

  • Raimundas Vidunas
  • Alexander V. Kitaev
چکیده

Various Schlesinger transformations can be combined with a direct pull-back of a hypergeometric 2×2 system to obtainRS 4 -pullback transformations to isomonodromic 2× 2 Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic functions, possibly in different orbits under Okamoto transformations. This paper demonstrates a direct computation of Schlesinger transformations acting on several apparent singular points, and presents an algebraic procedure (via syzygies) of computing algebraic Painlevé VI solutions without deriving full RS-pullback transformations. 2000 Mathematics Subject Classification: 34M55, 33E17. Short title: RS-pullback transformations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of RS-pullback transformations for algebraic Painlevé VI solutions

Algebraic solutions of the sixth Painlevé equation can be computed using pullback transformations of hypergeometric equations with respect to specially ramified rational coverings. In particular, as was noticed by the second author and Doran, some algebraic solutions can be constructed from a rational covering alone, without computation of the pullbacked Fuchsian equation. But the same covering...

متن کامل

Quadratic Transformations of the Sixth Painlevé Equation with Application to Algebraic Solutions

In 1991, one of the authors showed the existence of quadratic transformations between the Painlevé VI equations with local monodromy differences (1/2, a, b,±1/2) and (a, a, b, b). In the present paper we give concise forms of these transformations. They are related to the quadratic transformations obtained by Manin and RamaniGrammaticos-Tamizhmani via Okamoto transformations. To avoid cumbersom...

متن کامل

Sur les transformations de Schlesinger de la sixième équation de Painlevé

Les transformations de Schlesinger (TS) sont définies [14] comme des transformations discrètes qui préservent (à des signes près) la monodromie d’un système différentiel linéaire appelé système de Schlesinger. Si l’on choisit pour système de Schlesinger l’équation du second ordre possédant quatre points fuchsiens (“singuliers-réguliers”), de birapport x, et une singularité apparente d’affixe u,...

متن کامل

Schlesinger Transformations for Bonnet Surfaces

Bonnet surfaces, i.e. surfaces in Euclidean 3-space, which admits a one-parameter family of isometries preserving the mean curvature function, can be described in terms of solutions of some special Painlev e equations. The goal of this work is to use the well-known Schlesinger transformations for solutions of Painlev e VI equations to create new Bonnet surfaces from a known one.

متن کامل

Quadratic Transformations of the Sixth Painlevé Equation

In 1991, one of the authors showed existence of quadratic transformations between Painlevé VI equations with the local monodromy differences (1/2, a, b,±1/2) and (a, a, b, b). In the present paper we give concise forms of these transformation, up to fractional-linear transformations. The transformation is related to better known quadratic transformations (due to Manin and Ramani-Grammaticos-Tam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008